BioMedIA group is presenting 14 papers at MICCAI 2019

Uncategorized

Members of the BioMedIA group will be presenting 14 papers at this year’s MICCAI in Shenzhen. The full list of papers presented can be found below:

  • Confident Head Circumference Measurement from Ultrasound with Real-time Feedback for Sonographers. Samuel Budd, Matthew Sinclair, Bishesh Khanal, Jacqueline Matthew, David Lloyd, Alberto Gomez, Nicolas Toussaint, Emma Robinson, Bernhard Kainz
  • Complete Fetal Head Compounding from Multi-View 3D Ultrasound. Robert Wright, Nicolas Toussaint, Alberto Gomez, Veronika Zimmer, Jacqueline Matthew, Emily Skelton, Bishesh Khanal, Bernhard Kainz, Daniel Rueckert, Joseph Hajnal, Julia Schnabel
  • Overfitting of neural nets under class imbalance: Analysis and improvements for segmentation. Zeju Li, Konstantinos Kamnitsas, Ben Glocker
  • Improving RetinaNet for CT Lesion Detection with Dense Masks from Weak RECIST Labels. Martin Zlocha, Qi Dou, Ben Glocker
  • Image-and-Spatial Transformer Networks for Structure-Guided Image Registration. Matthew Lee, Ozan Oktay, Andreas Schuh, Michiel Schaap, Ben Glocker
  • Self-Supervised Learning for Cardiac MR Image Segmentation by Anatomical Position Prediction. Wenjia Bai, Chen Chen, Giacomo Tarroni, Jinming Duan, Florian Guitton, Steffen Petersen, Yike Guo, Paul M. Matthews, Daniel Rueckert
  • Learning Shape Priors for Robust Cardiac MR Segmentation from Multi-view images. Chen Chen, Carlo Biffi, Giacomo Tarroni, Steffen Petersen, Wenjia Bai, Daniel Rueckert
  • Data Efficient Unsupervised Domain Adaptation for Cross-Modality Image Segmentation. Cheng Ouyang, Konstantinos Kamnitsas, Carlo Biffi, Jinming Duan, Daniel Rueckert
  • Nonuniform Variational Network: Deep Learning for Accelerated Nonuniform MR Image Reconstruction. Jo Schlemper, Sadegh Salehi, Prantik Kundu, Carole Lazarus, Hadrien Dyvorne, Daniel Rueckert, Michal Sofka
  • VS-Net: Variable spitting network for accelerated parallel MRI reconstruction. Jinming Duan, Jo Schlemper, Chen Qin, Cheng Ouyang, Wenjia Bai, Carlo Biffi, Ghalib Bello, Ben Statton, Declan O’Regan, Daniel Rueckert
  • Detection and Correction of Cardiac MRI Motion Artefacts during Reconstruction from k-space. Ilkay Oksuz, James Clough, Bram Ruijsink, Esther Puyol Anton, Aurelien Bustin, Gastao Cruz, Claudia Prieto, Daniel Rueckert, Andrew King, Julia Schnabel
  • k-t NEXT: Dynamic MR Image Reconstruction Exploiting Spatio-temporal Correlations. Chen Qin, Jo Schlemper, Jinming Duan, Gavin Seegoolam, Anthony Price, Joseph Hajnal, Daniel Rueckert
  • Exploiting motion for deep learning reconstruction of extremely-undersampled dynamic MRI. Gavin Seegoolam, Chen Qin, Jo Schlemper, Anthony Price, Joseph Hajnal, Daniel Rueckert
  • Multiple Landmarks Detection using Multi-Agent Reinforcement Learning. Athanasios Vlontzos, Amir Alansary, Konstantinos Kamnitsas, Daniel Rueckert, Bernhard Kainz